Zamówienie wyślemy do 00 00 00


Quantification: Transcending Beyond Frege’s Boundaries. A Case Stude in Transcendental-Metaphysical Logic

Informacje dodatkowe



Rok wydania

Liczba stron


Cena katalogowa


General Overview
The Transcendental Dialectic of Quantification
CHAPTER 1. The Favoured Distinction
1.1. Foundational Goals – Strategy and Tactics
1.2. Natural Language vs. “Formalised Language of Pure Thought”
1.3. Grammar vs. Language: The Quest for Basic Distinction
1.4. Extending Function Theory
1.5. The True Basis of Frege’s Logic: Function or Relation?
1.6. Frege’s New Way of Conferring Generality: Empty Placeholders in the Context of the Conditional
1.7. Schröder’s Objection Revisited
1.8. Frege’s Hidden Agenda
1.9. The Fregean Quantifier and the Philosophical Clarification of Generality: Frege’s Misjudgement and Heidegger’s Prophecy
1.10. GTS as Games with Tainted Strategies
CHAPTER 2. The Principle of Identity and its Instances
2.1. The Aboutness of Propositions
2.2. Frege, Euler, and Schröder’s Quaternio Terminorum
2.3. Ockham and Truth in Equation
2.4. Frege’s Improvement on Kant: Synthetic Statements as Kind of Analytic
2.5. The Burden of Proof   The Transcendental Analytic of Quantification
CHAPTER 3. Reference and Causality
3.1. ‘Hilfssprache’ vs. ‘Darlegungssprache
3.2. Frege’s Constant/Variable Distinction vs. Peirce’s Type/Token Distinction
3.3. The Generality of Reference and the Reference of Generality
3.4. Peirce’s Real Dyad and Causality
3.5. A Dual Perspective on Causality and Mind-Independence
3.6. Negation, Mind Independence, and the Tone/Token/Type Distinction
CHAPTER 4. Peirce’s Categories and the Transcendental Logic of Quantification
4.1. Degenerate Thirdness vs. Thirdness as Relationship
4.2. Vendler’s Query: ‘Each’ and ‘Every’, ‘Any’ and ‘All’
4.3. Further Keys to Addressing Quantification: Non-Partitive vs. Partitive Use of Quantifiers
4.4. Earlier Proposals for Quantifiers
4.5. Jackendoff’s Query Revisited: The Purloined Pronoun
4.6. Jackendoff’s Query Revisited: The Hidden Identity
CHAPTER 5. Gödel’s Incompleteness Theorem and the Downfall of Rationalism: Vindication of Kant’s Synthetic A Priori
5.1. Chomsky’s Understanding Understanding and Gödel’s First Incompleteness Theorem
5.2. Gödel, Chomsky, and the Synthetic Base of Mathematics. Part I
5.3. Gödel, Chomsky, and the Synthetic Base of Mathematics. Part II
5.4. Are There Absolutely Unsolvable Problems? Gödel’s Dilemma
5.5. Gödel’s Dichotomy: The Third Alternative
Index of Names
Subject Index

Skip to content